
J .  Fluid Mech. (1969), vol. 35, part 1 ,  pp .  185-205 

Printed in Great Britain 
185 

Linear theory of the circulation of a stratified ocean 

By JOSEPH PEDLOSKY 
Department of the Geophysical Sciences, University of Chicago 

(Received 13 June 1968) 

A linear model of the circulation of a stratified ocean, in a closed basin, driven 
by both wind stress and heating is presented. Particular attention is given to the 
interdependence of the primary features of the oceanic circulation. The upwelling 
process is studied in detail and it is shown that the complete determination of the 
mid-ocean thermocline solution depends on the upwelling in the boundary 
layers on the ocean basin’s side walls. The morphology of the side wall boundary 
layers as a function of the stratification is also discussed. 

1. Introduction 
One of the central problems in dynamical oceanography is understanding how 

surface heating and wind stress drive the steady-state general oceanic circula- 
tion. The theoretical description of the observed oceanic density structure with 
its steep vertical gradient (the thermocline) and associated currents is one of the 
chief goals. The problem presents formidable difficulties; consequently , most of 
the theoretical investigations have dealt, in one way or another, with highly 
idealized models. Indeed, the present study is no exception. 

In  the past, the construction of models has generally proceeded along two 
paths, which loosely correspond to either studies of the wind-driven circulation 
or ‘thermocline ’ studies which concentra,te on deducing from a given surface- 
temperature (and wind-stress) distribution the mid -ocean density and current 
structure. 

In  investigations of the thermocline problem (e.g. Robinson & Stommel 1959; 
Robinson & Welander 1963) the model dynamics was assumed to be linear, i.e. 
the pressure gradient was balanced in the horizontal by the Coriolis forces 
(geostrophic approximation) and in the vertical by buoyancy forces (hydro- 
static approximation). The heat equation for the temperature (or density), 
however, was non-linear since both advective and diffusive processes are im- 
portant. This non-linearity hampers the analytical treatment of the problem 
and progress has been made only for open ocean basins, usually bounded by a 
single meridional coast. In  a sense the ‘geometry’ is, in such treatments, sacri- 
ficed for greater realism in the ‘dynamics’. However, there are instances of 
rotating, stratified fluids in which the lateral, vertical boundaries are determin- 
ing factors in the total circulation and therefore of crucial importance (e.g. 
Barcilon & Pedlosky 1967). 
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In  contrast, noting that over most of the ocean the vertically integrated 
horizontal velocity (the transport) is independent of the density structure, 
investigations of the wind-driven circulation problem have usually ignored the 
effects of stratification while recognizing the importance of the ocean basin’s 
boundedness. These investigations (e.g. Stommel 1948; Munk 1950) have been 
successful in explaining the observed western intensification of the oceanic 
circulation as an effect of the lateral boundaries on a spherical globe, but the 
resulting complexities due to geometry are relieved by ignoring the ocean’s 
stratification. 

A different point of view is taken in this paper in an attempt to illuminate 
certain questions left unanswered by the previous approaches. Namely what is 
the effect of lateral boundaries on the thermocline-associated circulation and 
the effect of continuous stratification on the results of the wind-driven transport 
theories? The goal here is to formulate a well-posed problem for the combined 
wind-driven and thermally driven ocean circulation in an endosed basin of 
finite depth exhibiting the most interesting features of the oceanic circulation, 
which is at  the same time, analytically, sufficiently tractable so that it will be 
clear in what way the various elements of the problem, hitherto studied in 
isolation, are interdependent. To fulfil this last requirement all the equations of 
motion, including the heat equation, are linearized. The heat-advection process 
is taken into account by linearizing about a given vertical stratification. The 
shortcomings of this approach, from an oceanographic point of view, are obvious 
in so far as the necessary physical model for the linearization departs markedly 
from the real physical situation. Nevertheless, all the fundamental physical 
processes are still represented; and together with turbulent eddy coefficients of 
viscosity and thermal diffusivity a tractable, well-posed boundary-value problem 
can be pursued. I stress again that the aim of this study is to explore the inter- 
dependence of certain fundamental oceanographic phenomena in this simple 
model, which in the past have perforce been studied separately owing to the 
greater degree of complexity which arises in more physical realistic models. It 
is found, for example, that the structure of certain boundary-layer regions and 
their morphology as a function of the stratification depends on the nature of the 
interior and vice versa; further, the complete specification of the interior, mid- 
ocean circulation is only possible when the boundary-layer problem of upwelling 
at the coast has been solved. This latter result was anticipated in an earlier 
study (Pedlosky 1968) of the wind-driven circulation of a homogeneous ocean; it 
is even more forcefully true when the ocean is stratified. Some of these features 
would be missed in a partial treatment of the problem which did not explicitly 
recognize the necessity of closing the circulation by satisfying all the necessary 
boundary conditions. 

2. The model 
Consider a rectangular ocean basin of constant depth D bounded by rigid, 

thermally insulating walls on 2 = 0, L and y = 0, bL, where x, y and z are co- 
ordinates measuring eastward, northward and upward respectively (0 < z < D) .  
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The effect of the earth's sphericity is modelled by using a variable Coriolis 
parameter f which is a linear function of y, i.e. 

f =fo+P*y .  

This is the traditional p-plane approximation first introduced (in a meteoro- 
logical context) by Rossby (1939) and is a suitable idealization of the dynamical 
effects of sphericity in middle latitudes. Cartesian co-ordinates are then used for 
an otherwise planar system. The imposed temperature variations are sufficiently 
small so that a Boussinesq approximation is presumed valid throughout with a 
linear state relation between temperature and density. The effect of salinity in 
separately affecting the density field is ignored. The equations of steady motion 

uv, + vvy + W1.i +fu = py + VZi(Vxx + vy,) + v,vez, 

uw, + vwy + wwz = -pa -pg + VH(W,, + wyg) + vywzz, 

U,+V,+W, = 0, 

uT, + vT, + u)T, = KH(T,~ + TyJ + K~ T,, 

P = Po(1 - w- To)). 
(u, v ,  w )  are the eastward, northward and upward components of velocity. The 
(variable) rotation vector i f is  anti-parallel to the direction of gravity, g. p ,  p and 
T are the pressure, density and temperature respectively. The density and 
temperature are related linearly by the last equation wherein pa and To are 
reference levels for p and Twhile a is the coefficient of thermal expansion of the 
fluid. Finally, eddy coefficients, meant to  parameterize the effects of small-scale 
turbulent diffusion of momentum and heat, are introduced. These are vH and 
K~ for the horizontal diffusion of momentum and heat, while v, and K~ are 
meant to represent the process of vertical diffusion of momentum and heat. 
They are taken in this model as constants. Although the fluid is stratified it is 
incompressible. 

The temperature field is partitioned in the following way: 

T = To+(AT,)(z/D)+(AT,)T'(z,y,z). 
The constants (AT,) and (ATH) measure, respectively, the size of the basic 
stable stratification and the horizontally variable temperature imposed on the 
ocean's upper surface at  z = D. In  order to effect a linearization of the problem 
it is assumed that (AT,) > (ATH). In short, the mean ocean thermal structure 
has been highly simplified for the purpose of mathematical simplicity. 

In  the real ocean the mean (and averaged) temperature gradient decays with 
depth and is maintained by the motion itself. In  this model this feature holds 
true only for the small, motion-produced anomaly, T'. 

Similarly, a wind-stress ~ ( x ,  y) = T ~ T ' ( X ,  y )  is specified at  x = D, T~ being a 
measure of the stress amplitude. 
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Non-dimensional variables, denoted by primes, are introduced as follows: 

(x,Y) = L(Z’,Y’), z = Dz’, 

gD go2 
foL foL2 

(u, V )  = a(AT1X) __ (u‘, v‘), w = a(AT’) - w‘, 

p = -pogDz’ + &pOag(Al;,)zf2D +poa(AT,)gDp’, 

A L f = f o  (1 + f ”) = f o ( 1  +PY’) = f o  f’. 
0 

The equations of motion become, after eliminating the density with the use of 
the state equation, and then dropping the prime notation for dimensionless 
variables : 

(2 . la)  C,(UU, + vuY + WU.,) - f v  = -px + JEH(u,, + uyV) + &EVZL,,, 

ET(uv,+ vvY + WV,) + fic = -pY + &EH(v,, + vU,) + & ~ ~ ~ v z 2 ,  ( 2 . l b )  

62S,(UW, $. VWY + WW,) = -p2 + T + a2[ @H( W,, 4- WY,) + QE, W,,], (2.1 C) 

C,(UT, + VTy + WT,) + W f l  = Q ( E ~ / ~ H )  (Txx + Tuu) + &(Ey/‘J‘p) T,, ( 2 . 1 4  

u,+v,+w, = 0. ( 2 . l e )  

The following dimensionless parameters have emerged: 

eT = [ag(ATH) D]/( f i  L2),  the ‘thermal’ Rossby number; 

the ‘vertical’ Ekman number; 

the ‘horizontal’ Ekman number; 

r3 = D/L,  the aspect ratio; 

X = [ag(ATv) D ] / ( f $ L 2 ) ,  the stratification number, 

Ev = (2vv)/(foD2), 

E H  = (2%Y)/(f0L2)’ 

and gH = v H / K ~ ,  vC’ = v ~ / K ~ ,  the ‘horizontal’ and ‘vertical’ turbulent Prandtl 
numbers. 

The only input of energy to drive the circulation occurs at  the upper surface 
of the ocean where the wind stress and temperature, Y(X,  y) are specified. All 
other surfaces are insulated to further heating and allow no slip. Thus, 

(u, v, w) = 0 on x = 0, 1, y = 0 ,  b,  z = 0;  

T,= 0 on z = 0 , l ;  

Tu= 0 on 9 = 0,b;  

q = O  on z = O ;  

while on x = 1, 

(without any loss of generality it is assumed that 

T = Y ( X ,  y) ; 

(2.2a) 

(2.2b) 

(2.2c) 

( 2 . 2 4  

( 2 . 2 e )  



Linear theory of the cirwlntion of a strati$ed ocean 189 

while continuity of stress on z = 1 yields 

dX) and T(Y)  are the x and y components of T while ew is a Rossby number based on 
the wind stress, i.e. 

ew = p*y*L ~ (vV$)-*. 

Further, variations of the upper surface will be neglected so that 

w = O  on z = 1 .  (2.29) 
The analysis will proceed by neglecting henceforth the terms in the equations 

of motion proportional to eT and only the resulting linear system will be con- 
sidered. 

E ,  
while uy = a, = u. No favoured note for either horizontal or vertical mixing 
is then assumed a priori. 

Finally, since for the oceanographically relevant parameter range E and 6 are 
small, it  is to be expected that boundary layers will be present whose stncture 
will depend on the relative sizes of E ,  6 and US. It is realistic to assume that US is 
sma.11. Nevertheless, some freedom will be allowed in the magnitude of US to 
illustrate the dependence of the circulation on the strength of the stratification. 
Most of the detailed calculations will be done, however, for the case E* < US 1. 

For ease in presentation only, it will arbitrarily be assumed that E ,  = EH 

3. The upper Ekman layer 
As is well known, the coupling of the oceanic interior to the surface wind 

stress, allowing (2.2f) to be satisfied, is accomplished by a viscous boundary 
layer (the Ekman layer) within a region of O(E4) of the upper surface. 

Within this region the dynamical fields can be represented as follows 

= uI(z, y, z, f uE(x,  y, a), ( 3 . l a )  

v = V I k ,  y, 4 + V E ( X ,  y, 21, ( 3 . l b )  
w = wl(z,Y,z)+E*w,(x,Y,a), ( 3 . 1 ~ )  

T = T'(x, y, Z) + dS'E*T'(x, y, a), (3.ld) 

= $)z(z, y) z ,  + VflE$)E(x, y, a), (3.1 e )  
where the I subscripted variables represent the fields below the Ekman layer 
while the E subscripted variables represent the corrections required within the 
Ekman layer to satisfy (2.2f), and go to zero as 

becomes large. 
It is easy to show that the Ekman layer equations for U, and v, are, to lowest 

order, identical to those for a homogeneous fluid and therefore it can be shown 

(3 .2a)  that 

(3.2b) 

A z = (l-z)E-4 

uE = (eW/2e,)f-4exp (-2p) [(7(1/)-7("))sin~f~+(7(1/)+7(")) COS~?], 

v, = (ew/2e,)f-*exp ( - 2 f l ) [ ( 7 ( U ) - - ~ ( " ) )  cosaf*-(~(v)+~("))sina~*]. 
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With the use of the continuity equation and the condition that w is zero on 
z = 1 we find that 

(3.3) 

(k is a unit vector parallel to the z axis) while, since the temperature correction 
in the Ekman layer is small 0(&3Ei), it  is clear that 

(3.4) 

W I ( X ,  y, 1) = ‘“w -- z curl .If, 
‘T 

T’(x, y, 1) = r ( z ,  9). 

Equations (3.3) and (3.4) will then serve as boundary conditions for the interior 
flow beneath the Ekman layer. It is clear a t  this point that two independent 
problems are being done a t  once for economy of exposition. The wind-stress 
driven problem and the thermally driven problem can be done independently 
because the dynamics has been linearized and the relative strength of the former 
to the latter is simply proportional to the ratio eW/eT. Rather than postulate a 
formal ordering relationship of this ratio in terms of the other (small) parameters 
in the problem it is best to treat ew/eT as a trace constant for that part of the 
solution forced by the wind stress. Ordering is then done within each problem. 

In  any event, it will be observed in the next section that uI and vI are, in this 
sense, always of smaller magnitude than uE and v, and therefore the horizontal 
flux of fluid in the Ekman layer U,, due to the wind stress, is 

where 6 and 3 are unit vectors parallel to the z and y axes respectively. 

4. The thermocline region 
In  the region below the Ekman layer and removed from any side wall boundary- 

layer region, the interior equations, with the neglect of the viscous and heat 
diffusion terms, become (assuming aS B E )  

fvI = pix, faI = --pry, TI = pIZ,  wI = 0, (4 . la ,  b, c, d )  

u,, + V I Y  + WIZ = 0. (4.le) 

Elimination of the pressure yields the Sverdrup relation 

PVI =f% 
and the ‘thermal’ wind balances 

fUIB = - T I Y ,  f V I Z  = TI,- (4.3) 

However, (4 . ld)  and (4.2) imply that TIz = 0. This is in general incompatible 
with (3.4). This difficulty is resolved only through the introduction of a thermal 
boundary layer or thermocline. In  fact it  is not difficult to show also that no 
motion can occur beneath the thermocline layer at  all. Even uI must vanish if 
proper allowance is made for the condition that u is zero on x = 0 , l  in conjunction 
with the insulating condition T, = 0 on x = 0 , l .  This strong constraint arises 
solely due to the p-effect (4.2) which shows that northward motion on the sphere 
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must be accompanied by vortex stretching which in the case of a stratified ocean 
is suppressed by the stable stratification. The required associated vertical ve- 
locity can occur only when there is sufficient thermal diffusion, as in the thermal 
boundary layer. 

In  the thermocline region the interior variables can then be shown to be 
represented in the following manner 

uI = (E /cX) tuT(x ,  y,6),  ( 4 . 4 a )  

vI = (E/oS)tvT(x, y, 6 ) ~  (4.4b) 

wI = (E/cfi)'wT(x, y, C)Y ( 4 . 4 4  

PI = (E/oS)'pT(x, Y, (4 .4a )  

TI = TT(x, y, 6), (4 .4e)  

where 

The thermocline variables must vanish as 6 becomes large. 

6 = (1 - 2) (crX/E)t. 

The dynamical equations for the thermocline variables are 

fvT = PTz, fuT = -PTy, TT = -PT6, (4 .5a ,  b, c )  

uT.z i- vT'y = w P p  wT = ikTTg' ( 4 . 5 4  e )  

If all variables are eliminated in favour of the temperature, we obtain the 

(4.6) 
thermocline equation 

TTgC[C = zP/f 2TTz* 

From (4.6) we can observe that no thermocline layer would exist if /3 were 
zero. When /3 is zero, no thermal layer is possible, but in that case none is needed 
for the Sverdrup constraint (4.2) is also absent. 

The solution to the thermocline equation will satisfy the boundary con- 
ditions ( 3 . 3 )  and (4 .4)  and will limit the motions produced by the surface heating 
and wind stress to a region near the surface whose characteristic depth, I T ,  is 
given byt  

which is the same depth scale found by Stommel & Veronis (1959). Since no 
motion occurs beneath this depth no effect of the bottom, either frictional or 
topographical is present in this model. 

Before proceeding to the solution of (4 .6)  it is convenient to Fourier transform 

IT  = (E/G8)4 

(4 .70)  

(4 .7b)  

t In dimensionless units, with the dependence on p* explicit, the thermocline depth LT 
is 
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The transformed variables then satisfy the equations 

f VT = PT,, f UT = - PTy,  @T/k = R p ,  ( 4 . 8 ~ ~ ~  b, c )  

UTx+J&, = kW,-- -(gS)*f.curl- WT = - & k 2 @ , + i k Y ( x , y ) .  ( 4 . 8 d , e )  

The governing equation for 0, which is the transform of (4.6) is 

1 cw 7 

€T f’  

whose general solution is 

0,  = C(k ,  y) exp [ - (k4f 2/2/3) (1 -41 
€ + 1: 5 [ksY - k( B X ) ~  3 f . curl exp [ - (d - .)/PI dx’. (4.10) 
€ 1 ~  

Note that the general solution for 0 ,  includes a free solution 

c(k, y) exp [ - &4f2(1 - %)/PI7 

which can only be determined by an analysis of the side wall boundary layers 
at  the ocean basin’s rim. One of the central difficulties in completely specifying 
the thermocline solution is that the specification of the velocity U ,  on x = 1 is 
not sufficient to determine the circulation in the free solution. This is quite 
different from a homogeneous ocean model (e.g. Pedlosky 1968) where it is 
sufficient. Specification of uT on x = 1 will determine C, but not C, and will 
therefore still leave unspecified an essential component of the circulation. This 
unspecified circulation will have no vertical mean, and it is not surprising that 
this difficulty does not arise in homogeneous models where the interior horizontal 
velocity is constrained by the Taylor-Proudman theorem to be depth indepen - 
dent. 

Since 

the vertical means of u,, V, and pT are given by the values of their transforms 
evaluated a t  k = 0. Hence if only C, is known the as yet indeterminate circulation 
will give no contribution to  U, and V, when k = 0. 

Further discussion of the thermocline solution and its complete determina- 
tion must await the results of boundary-layer analysis on the side walls. To 
analyse the boundary layers on x = 0 and x = 1 it will be convenient to assume 
that # ( O ,  y) = 7 9  1,  y) = 0, so that there is no stress-forced upwelling at  these 
coasts. It is not difficult t o  remove this restriction but it does lead to greater 
complexity in presentation. 

5. The meridional boundary layers 
Consider the boundary-layer region near x = 0, i.e. the western boundary 

layer. The vertical scale of this region, since it must match on to the thermocline 
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will also be I, .  Let the boundary-layer corrections to the interior variables 
be G, B, 65, 5? and 17, Assuming that the northward motion remains geostrophic 
and the whole motion remains hydrostatic the boundary-layer equations are, 
for the correction functions, 

fv" = F x ,  

fG= -17 y +- LFm, 
0 = l&7c + T, 

= SETZx, 

G, 4- cv = Gc; 

or in terms of the temperature alone, 

ET,, + (E/aX)+ f 2Txcc - 2pF = 0. 

EO,, - k2(E/aX)* f 20, - 2/36 = 0, 

(5.1) 

If the boundary-layer variables are Fourier transformed in the same way as 
the thermocline variables, (5.1) becomes 

(5.2) 

where 6 is the Fourier sine transform in 5 of T. If k = 0(1)  then the resulting 
boundary-layer structure depends on the relation between aX and E. If aX $ E* 
then (5.2) can be approximated by neglecting the second term, yielding a 
boundary-layer thickness of O ( E f ) .  The thickness and horizontal structure is 
then identical to the layer found by Mu& (1950). The 5 (or k) dependence is 
carried parametrically and determined by matching to the thermocline solu- 
tion. On the other hand, if aS 4 EA the layer splits into two layers. The thicker 
layer has a thickness O(12,) and is a balance between the second and third terms 
while the thinner layer has a thickness O(Z,(d)*) and is a balance between the 
first two terms, This dependence of the structure on the stratification is interest- 
ing and it is worthwhile noting that the equation for 6 when k = 0, which is the 
equation which holds for the vertically averaged boundary-layer variables, 
always yields a thickness of O(Ef) and a structure of a Munk layer. In  a sense 
then, the equations for the mean can yield a boundary-layer structure which is 
never observed locally (i.e. for a particular value of 6 or k) in the stratified model 
unless the value of the stratification is sufficiently large. Since it does correspond 
to the mean structure, and occurs in the case of substantial stratification (which 
is the condition of interest here) the following analysis will be restricted to the 
former case, i.e. when a8 > E). One might also argue, although much less 
strenuously, that this is also justifiable in terms of the sizes of the parameters in 
cases of oceanic relevance. For if 

a(AT,) = g = 10 cm2 sec-l, 

D = 4 x 105 cm, a = 10, 

v,, = 10 om2 sec-1, fo = lo-* sec-l, 

then a8 = 10-2 while E = 0.6 x But it is clear that a8 is really of O(E4) and 
the lack of definite information concerning the proper value of v and vy makes 

13 Fluid Mech. 35 
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the decision to consider aS % Ef really rather arbitrary. It is, however, a choice 
that is made. 

Restricting ourselves then to circumstances where a8 % E f  we can represent 
the dynamic variables in the western boundary-layer region as 

(5.3a) 

(5.3b) 

w = Z $ W ,  +Eh(d')-18(7,y,C), (5.34 

P = lTPT + z T $ ( 7 ,  Y, 61, (5.34 

T = TT f p(7, y, 61, 
where the correction functions go to zero as 

(5.3e) 

7 = xE-9 

becomes large. The solutions for the correction functions can easily be found 
and are 

V" = A(y, 6) exp 1- (W)) 4 ~ 1  sin ( Z P P  $43 y, 

i7 = -Acf(2P)-fexp [- (~P)f$7]sin[(2/?)f$J3 7+$n], 
Tv = Ac$f(2p)*exp[-(2p)Q&7]sin[(2P))$J3 r+?v]. (5.4d) 

( 5 . 4 4  

.ii = -A,(Sp)-gexp[-(ZP)-5gy]sin1(2P)f&2/3 ~ + & n - ] ,  (5.4b) 

(5 .44 

The scaling for the amplitude of the correction functions has been chosen so 
that this Munk layer can bring the zonal velocity u, to rest on x = 0. The form 
of the solution has already been arranged to satisfy the no slip condition on v to 
lowest order; at  the same time this satisfies the insulating condition Tz = 0 on 
x = 0. 

Interior to this layer, there exist thin non-hydrostatic and non-geostrophic 
regions which serve primarily only to satisfy the no slip condition on w without 
carrying significant flux of fluid. The thickness of this region is less than EJ and 
will not be explicitly considered which means that the no slip condition for w on 
the lateral boundaries will be relaxed and this will not affect the determination 
of the interior fields or the significant thicker boundary layers to lowest order. 
It is still crucial however to satisfy the vertical mass flux balance, of which more 
later. For the moment, it is enough to point out that the vertical velocity in the 
ES layer is too small to have the vertical mass flux in this layer play any role in 
completing the vertical mass flux balance. 

On x = 1, as examination of (5.2) shows, no solution (for any value of a#) can 
be found which a t  once satisfies the no slip condition on v and at the same time 
has sufficient freedom left in the form of the solution to satisfy the condition of 
u = 0 on 5 = 1 for an arbitrary uT. This circumstance occurs also in the homo- 
geneous models. 

The boundary-layer corrections on x = 1 serve to satisfy the no slip condition 
on v, and by the thermal wind relation, automatically to satify the insulating 
condition T, = 0. In  fact the amplitude of the correction functions must be 
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reduced by E4 so that the thermocline zonal velocity itself must satisfy the 
condition u = 0 on z = 1, i.e. from (4.10), ( 4 . 7 ~ )  and (4.7b) we see that 

c, = 0, 

so that C is a function of k alone. The free solution then implies that a circulation 

V, = k3( 1 - 2) C(k)  exp [ - k4f2( 1 - s)/2/3], 

W, = - 4k2C(k) exp [ - k4f2( 1 - 2)/2p], 

is yet left undetermined. If k3C(k) goes to zero as k+O then the associated 
horizontal velocities have zero mean. To determine C(k)  finally and thus to 
specify completely the interior circulation it is necessary to consider carefully 
the boundary layers on y = 0, b and to describe the closure of the vertical mass 
flux circuit by considering the upwelling phenomena in these boundary layers. 

6. The northern boundary layer 
Consider the boundary-layer region near y = b. The vertical scale of this region 

will also be, for the most part I, .  In  the same manner as the discussion of the 
western boundary layer, let the boundary-layer corrections to the interior 
variables be denoted C, 5, 67, 5? and p .  Assuming that .ii, the ‘downstream’ 
velocity remains geostrophic, and the motion is hydrostatic the boundary-layer 
equations for the correction functions are 

0 = -17,+fC+*ECY,+g(E/12,)~gg, 

o =  - p  -fC 
Y 7  

0 = l F y c  + P, 
gSG = -- m u u  + * ( E m  q g ’  

CZ+CU = l&zc. 

The 5 derivatives have been retained in the diffusion terms along with the 
y derivatives because the layer thickness of the northern boundary layer is as 
large as the thermocline depth I, .  This thickening of the northern region com- 
pared to the western region is due to the reduction of the advection of planetary 
vorticity (the P effect) due to the decrease in fi which is in this layer the velocity 
normal to the boundary. 

Eliminating all variables in favour of the temperature yields the boundary- 
layer equation 

where use has been made of the fact that US < 1. 
Both the third and fourth terms in (6.1) are O( 1) (this is in fact the thermocline 

balance) and the structure of the layer depends on which of the first two terms 
enter the balance. If the first term balances the third and fourth the layer thick- 

Eq),,, + VwVf 2 q 1 1 / g g  + f 2 q g g c  - 2 P R  = 0, (6.1) 

13-2 
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ness is E f ,  but this requires that ass 9 1 to ignore the second term. This is not 
very realistic, as noted in $5 ,  and the alternative possibility must be considered. 
If ass < 1 then the layer splits into two. The thicker layer is a balance between 
the second, third and fourth terms and yields a boundary-layer thickness 1, 
which is the thermocline thickness. This layer is as thick as it is deep (in the 
scaled co-ordinates) which is why the derivatives were retained along with y 
derivatives. Interior to this region lies a thinner region of thickness Z,(aS)*, in 
which the f i s t  two terms of (6.1) balance. They merge and become the Ea layer 
as crS approaches unity. 

Again, it is convenient to introduce the appropriate Fourier transforms of the 
dynamic variables, viz. 

In  transforming (6.1) information is required at  (5 = 0. In  particular the prob- 
lem demands the knowledge of the vertical velocity pumped into the boundary 
layer from the upper Ekman layer. As long as uh' < 1 it is possible to show that, 
as in the homogeneous model (Pedlosky 1968) the Ekman layer transport im- 
pinging on the boundary at y = b spews out of an E8 by Eg corner at  y = b, 2 = 1 
and enters the side wall boundary layer only in the region b - y < O(E4). In  fact, 
as long as as < 1 the analysis of the corner proceeds entirely as in the homo- 
geneous case. This implies that on 5 = 0 (Pedlosky 1968)) 

G(x,y, 0) = - [exp[-h(~-?/)]{~,(x,b)sinh(b-y)-V,(x,b)cosh(b-y)}], (6.3) 

where h = f 4E-4. This wind-stress forced upwelling must be taken into account 
in the solution of (6.1). By taking the sine transform of (6.1) and using the 
boundary condition (6.3) we find that 6 satisfies 

a 
aY 

EG,,,, - k21% f2@,, + k"f6  - 2p0, 

- (UE(2, b)  - W Z ,  b ) )  COB h(b  - y)]}. (6.4) 

A particular solution of (6.4) can easily be found in the form 

6 -  - exp [ - h(b - y)] [ A  sinh(b - y )  +B cos h(b - y)], 

(V, + U,) ( k4 - 4E-l) - (VE - U,) 2f (aSE)-* k2 
ka + 4k4f2/aSE + 16/E2 (6.6) 
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where again use has been made of the fact that ~ T S  < 1, E) < 1. Within the same 
level of approximation the associated northward velocity in the particular 
solution, c, can be found and on y = b it has the form, 

VE(x, b )  16/E2 - 2k2UE(x, b)  [lc4/Z$ + 4f2ZT/E2] 
T $ ( ~ , b , k )  = lT7(ks + 4k4f2/dE + 16/E2) (6.7) 

Now the limit k+O yields 

and this is just the integrated v" in the particular solution, i.e. 

Z,&(x, b, 0 )  = VE@, b )  

zT/; ~&,b,C)ClC = l T c ( x , b ,  0 )  = V, ( s ,b ) .  (6.8) 

Therefore on y = b the combined northward velocity of the thermocline solution 
and the homogeneous solution of (6.4) must accept a total horizontal flux of mass 
equal to -VE(x, b). It is convenient to think of the particular solution as a 
separate physical region in which the flux in the upper Ekman layer descends 
and enters the deeper oceanic circulation below. As far as the homogeneous 
solution of (6.4) is concerned the source flow at the top is replaced by a source of 
fluid entering into the region horizontally on y = b. The distribution of this flow 
with depth is of importance. Thus on y = b, 

tjP(x, b, 6) = - coskcT$(x, b, k ) d k .  (6.9) n o  /* 
Examination of (6.7) shows that the integral in (6.9) can be easily evaluated in 

terms of the poles of (6.7) which are at  

The contributions to (6.9) from the first set of poles is, for as < 1, negligible 
compared to the second set. In  fact for ~ T S  < 1 a consistent approximation to 

If, for example, the wind stress is parallel to the line y = b, so that U, = 0,  

(6.12) 

The important thing to note is that this particular solution decays with depth 
and is vanishing small when 1 - z = O(Z$) ! Thus the penetration of the particular 
solution is very shallowt compared to the thermocline depth and this will have 
important consequences in what follows. 

The homogeneous solution of (6.4) can now be found. When aX < 1 it  de- 
composes, as already described, into two boundary-layer regions. In  the thicker 

then Zp(x, b, 6) is simply 

'(x' b, J2 {exp [ - c/:l~,f+] sin ( C / l T f 4  + an)}. 
l T f  

q z ,  b, 6) = 

t In dimensional units the penetration depth, Lp, is 
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layer, with scale l,, the boundary-layer correction functions can be represented 
as follows: 

(6.13 a)  

P = 1,P1(s, r ,  k), 

TV = 1% W,(Z, T ,  k), 

( 6.1 3 c) 

p .13a)  

6 = G,(z, r,  k), (6.13 e) 

where r = (6 - y) Z@l. 

These correction functions satisfy the dynamical equations 

0 = -P;,+fV,, ( 6 . 1 4 ~ )  

0 == p1:t-fol) (6.14 6 )  

O = kPl+ O,, ( 6 . 1 4 ~ )  

IP = g[o,,, - M,], (6.14d) 

olx- PI, = ZTkw,. (6.14e) 

Eliminating all variables in favour of 8, 

(6.15) 

Before proceeding to the solution of (6.15) it  is important to note that (6.14e) 
implies that the motion within this region represented by the boundary-layer 
correction variables is horizontally non-divergent to O(ZT). Thus there is no 
significant vertical flux of mass in this outer layer. Fluid entering this region, 
either from the interior, or the source region represented by the particular solu- 
tion will flow essentially horizontally. 

Using the fact that 8, must be zero on x = 1 (for the same reason the thermo- 
cline zonal velocity must vanish there) (6.15) can be solved by a Laplace trans- 
form in ( I - 2) to yield 

1 it, = exp [ -f2/Z,Bk4( 1 - x)] 1 m i  F(a)exp[-r (fki) 2P 1 a*+a(l -x) cla, ( 6 . 1 6 ~ )  
27Ti -mi 

As one can see, either from the formal solutions (6.16) or from the original 
equation (6.15) this outer layer has some of the characteristics of a diffusion 
layer, with the layer broadening as z = 0 is approached from the east. 
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In  the region b - y = O(ZT(aS)*) additional correction functions must be 
added to the solution of (6.4), these are denoted by a subscript 2. In  this region 
it can be shown that 

P = ZTFl(x, T ,  6) + bT(aS)’P2(s,~7 61, ’ = u,(x7 r 7  6) f ‘2(x> p? c), 
( 6 . 1 7 ~ )  

(6.17 b) 

( 6 . 1 7 ~ )  

( 6 . 1 7 4  

= If m x ,  T ,  6) + - W ~ 4 4 @ 2 ( X ,  p, 0, 

0 = O,(s, r ,  6) + (as)* 6 2 ( X 7 P ,  61, 
where ,U = (b-y)(l$aS)-i-. 

From the scaling amplitudes in (6.17), two important observations can be 
made. First, only the northward velocity in the outer layer will enter into the 
lowest order matching of v on y = b while the inner layer serves only to satisfy 
the no slip condition on u. Although this latter condition is important it will not 
affect the determination of either the interior nor any other boundary-layer flow 
to lowest order. It is, in distinction to the outer layer, passive, and does not 
directly figure in any further matching. For brevity, therefore, it will not be 
considered further in detail. Secondly, this layer has a vertical velocity which, as 
in the case of the outer layer, has an amplitude too small to provide a vertical 
flux of the same order as the interior. In  fact, a detailed consideration of this inner 
layer shows that it too is also horizontally non-divergent. 

In  summary then, the northern boundary layer can be considered broken up 
into three parts. In  the outer layer the northward velocity in the interior is 
brought to rest and turned westward; in the next layer the eastward velocity is 
brought to rest, while the innermost region represented by the particular solu- 
tion is the only one of the three regions in which a significant amount of vertical 
mass flux occurs, and this only to a very shallow depth. 

The remaining calculation to be performed in the northern boundary layer is 
the matching of v, or its transform, i.e. on y = b 

vr+ P,+ PJE, = 0, ( 6 . 1 8 ~ )  

or using (4.10), (4.7), (6.16b) and (6.11): 

o n y = b  
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Once T a n d y  have been specified as a function of x on y = b;  F ( a )  can be found. 
For example, if T is a function only of y and directed parallel to the x axis, while 
9- is also a function only of y, it  is easy to show that 

(6.19) 

The analysis of the boundary-layer region near y = 0 proceeds precisely as it 
did for the region near y = b. The results of that computation therefore, will 
merely be presented as needed. 

7. Closure of the thermocline problem 
It is still necessary to determine the free thermocline solution, i.e. to determine 

the function C ( k )  in (4.10). This can most easily be done by utilizing the obvious 
global constraint that 

The net upwelling in the oceanic interior must be balanced by the down- 
welling in the boundary layers on the oceanic rim. Now we can see why it was so 
important to note that the downwelling in the side-wall layers was so shallow 
compared to the thermocline depth. Below this penetration depth of O(Z$) the 
thermocline vertical velocity must have zero area average. To determine C ( k )  
then, we have 

b 1  

0 0  0 0  
z; l b j - l d z d y  = - j 1 dsdy Pp,  (7.1) 

where itP refers to the downwelling velocities in the boundary layers on y = 0, b. 
Again, for simplicity let us restrict our attention to the case where U, is 
zero on y = 0, b. This is not essential, and in fact the net downwelling is due to 
V,. If, however, U, = 0 on y = 0, b, then from (6.11) and the continuity equation 
we have : 

Since w, = - *kW, + k F ,  17-31 

then (7.4) 
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Finally (7.1), ( 7 . 2 ) ,  (7.4) and (4.10) imply that 

3 = -/obdyjoldx/)xt 5 - k ( v ~ ) t %  f .  curl T / f  
C T  

k3 7W(x, b)  

1 k3 7(*)(0, b )  

- ( V f l ) h h  ax 
C T  jol  [ k4 + 40-s/Ef '1 2fo 

+(OS)t% ax [k4 $- 408/Ef '1 Zf(0, (7 .5)  

The determination of C ( k )  is then complete and the interior thermocline 
solution completely specified. For k of O(1) the last two terms of (7.5) are negli- 
gible. This implies, in turn, that for (1 - x )  = O(lT)  the net interior vertical mass 
flux must vanish. Only when the surface is approached will the net interior 
vertical mass flux differ from zero. Inverting (7.2) ,we find that 

/ o b / o l d z d y ~ ,  = - 

The interior vertical mass flux has zero areal average below a depth of order 
= (E/crS)*. On 6 = 0, (7.6) yields 

where dl measures distance around the rim of the basin. The right-hand side of 
(7.7) is the area average of the Ekman flux (3.3) and (7.7) shows that the net flux 
penetrates only to (1 - z )  = O(E2,). Of course there are significant vertical ve- 
locities in the thermocline to depths of O(ZT) but they have no average in a 
horizontal plane. 

8. Example of an x independent forcing 
Consider the case where the wind stress acts purely in the zonal direction and is 

independent of longitude, i.e. 7 = ~(x)(y)$ while the surface temperature is also 
longitude independent, i.e. F = Y(y),  then (4.10) yields 
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where 

] (8 .3)  
eW (d)* 7(z)(b) 40.X/Ef2(0) 40.X/Ef2(0) --- - 
ET k3 [ f (b) jC4 + 4gS/Ef ' (b )  - f o  lC4 + 4~8/Ef '((0s * 

Note that C(0) = 0, so that the horizontal circulation in the 'free' solution has 
zero vertical average. (In addition the vertical mean of the circulation produced 
by the heating is zero.) On 5 = 1, we see that 

TT = 2?rdJoW dksinkgC(k). 

The determination of C( k) really then specifies the temperature distribution 
with depth on the eastern wall of the ocean. If C ( k )  were zero the temperature 
departure from the original linear temperature gradient would be zero. To get 
some idea of the thermocline structure it is illuminating to examine in some 
detail the structure of a typical dynamical field, for example vT. 

For small 5 the structure of the solution will depend on the forcing but for 
large g we can expect that the intrinsic nature of the thermocline solution will 
reveal itself. In  addition, for large it is possible to evaluate (8.2) asymptotically, 
for example, by the method of steepest descent. The calculation is straight 
forward and yields 

(where Re denotes the real part). 
The deep structure of thermocline is readily apparent. For large 5 the rapid 

variation of the solution depends on the function in the curly brackets in (8.4). 
This function is constant along lines where C4( 1 - x) = constant. Thus the isolines 
of constant vT shallow as x = 1 is approached from the west. If C(k) were zero 
then each isoline of constant vT would rise to the surface at x = 1. This would 
happen, for example, if the wind stress were zero and if /?b were sufficiently small 
so that f could be treated as a constant in (8 .3) .  



Linear theory of the circulation of a stratijed ocean 203 

Finally, to complete the solution, it is necessary to determine the strength of 
the western boundary current, i.e. to determine A(y, <) in (5 .4a)  (orequivalently, 
its cosine transform d ( y ,  <)). 

On z = 0, U, +C must vanish, or from (5 .4b)  and (4.7b, c )  

thus 

To determine K ( k ) ,  note that the intersection of the layer on the western wall 
with the I ,  layer on the northern wall produces tt region in which the Bi layer, 
with its dynamics unchanged, acts as western boundary layer for an extended 
interior which includes the 1, layer. Then (8.5) should be in fact altered to 

d a@, 0 
2 dY aY 1, 

@ ( 2 p ) - * - d ( y , k )  = (fk)--l-(O, y,k)-'(O,r,k) 

in regions near y = b. If (8 .7 )  is integrated in y and use is made of the fact that 
southward velocity entering the western boundary layer in the 1, by E* corner 
in the northwest corner can come only from the 1, boundary-layer mass flux, 
we obtain 

21'7(2P)-:d(y ,k)  2 = - (8.8) 

then for all y such that (b  - y )  9 1 ,  
m 

d , ( O , n , k ) d n ] ,  (8.9) 

which in comparison with (8.6) determines the constant K(k) .  By (6.14e) and 
the fact that 0, = 0 on x = 1 we have 

B,(O,r ,k)dr  = B,(x, 0 , k ) d z .  
!Om 10' 

The matching condition (6.18a) that 

(8.10) 

(8.11) 

with (6.11), ( 4 . 7 ~ )  and (4.7b) yields, 
a@, d ( y , k )  = --(2/3)3 - (fk)-'-(O,y' ,k)dy' 

4 3  J': aYF 

As a check, we note that, using (4.10) and (3 .5)  

CW d ( y , O )  = (uS)+-(zp)-#---* 
€1' aY 

(8.13) 
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This yields the vertically integrated northward flux in the western boundary 
current, and aside from factors introduced in the non-dimensionalization, agrees 
with the transport theories of the oceanic circulation. 

The vertical averages of the western boundary layer are not surprising, but 
the vertical structure predicted by the theory is. Perusal of (8.12) shows that the 
western boundary layer has two vertical scales: the thermocline scale I ,  forced 
by the interior transport impinging directly on the western wall; and another, 
shallower, component of the flow, which decays in a depth of O(l",), and is 
produced by the fluid which, downwelling at  the northern boundary to a depth 
of O(Z2,) was swept to the western boundary in the northern 1, layer. If V,(b) is 
greater (less) than zero there is downwelling (upwelling) at  the northern boundary 
and a shallow component of southward (northward) flow in the western boundaiy 
layer. 

9. Conclusion 
Even in this very simple physical model certain important interdependencies 

of more elementary aspects of the oceanic circulation have become apparent. It 
seems clear now that the complete understanding of the mid-ocean thermocline 
circulation cannot be completely divorced from a detailed consideration of the 
various boundary-layer phenomena at  the ocean basin's rim, especially the 
problem of upwelling. In addition, as the example of the last section showed, 
even the structure of the western boundary layer is affected by boundary-layer 
processes which are not local. 

As was stated in the introduction, the revelation of this interdependency of the 
elements of the circulation has been made possible only by the drastic mathe- 
matical and physical simplifications in the model. It is quite clear that the precise 
predictions of structure and amplitude given by this theory will be in serious 
error where non-linear effects are important. Nevertheless, this simple model, 
I believe, can serve as a guide in tracing similar effects in more physically realistic 
and complex models of the oceanic circulation. 

Other problems within this framework would be interesting to study. In  
particular, the circulation produced when one of the side walls is heated or cooled, 
(especially the northern boundary) below the depth of the thermocline would be 
of great interest. 

This work was completed while the author was supported by a Sloan Founda- 
tion Fellowship and visiting the Department of Mathematics at  Imperial 
College, London. 
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